Se pretende estudiar los conceptos básicos del movimiento parabólico.
Introduccion
lunes, 19 de octubre de 2009
Tiro Parabolicoo
Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Se corresponde con la trayectoria ideal de un proyectil que se mueve en un medio que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme
El movimiento de media parábola o semiparabólico (lanzamiento horizontal)- se puede considerar como la composición de un avance horizontal rectilíneo uniforme y la caída libre.
- El movimiento parabólico completo
- se puede considerar como la composición de un avance horizontal rectilíneo uniforme y un lanzamiento vertical hacia arriba, que es un movimiento rectilíneo uniformemente acelerado hacia abajo (MRUA) por la acción de la gravedad.
En condiciones ideales de resistencia al avance nulo y campo gravitatorio uniforme, lo anterior implica que:
- Un cuerpo que se deja caer libremente y otro que es lanzado horizontalmente desde la misma altura tardan lo mismo en llegar al suelo.
- La independencia de la masa en la caída libre y el lanzamiento vertical es igual de válida en los movimientos parabólicos.
- Un cuerpo lanzado verticalmente hacia arriba y otro parabólicamente completo que alcance la misma altura tarda lo mismo en caer.
Cuando un objeto es lanzado con cierta inclinación respecto a la horizontal y bajo la acción solamente de la fuerza gravitatoria su trayectoria se mantiene en el plano vertical y es parabólica.
Nótese que estamos solamente tratando el caso partícular en que factores como la resistencia del aire, la rotación de la Tierra, etc., no introducen afectaciones apreciables. Vamos a considerar también que durante todo el recorrido la aceleración debido a la gravedad ( g ) permanece constante y que el movimiento es sólo de traslación.
Para facilitar el estudio del movimiento de un proyectil, frecuentemente este se descompone en las direcciones horizontal y vertical. En la dirección horizontal el movimiento del proyectil es rectilíneo y uniforme ya que en esa dirección la acción de la gravedad es nula y consecuente, la aceleración también lo es. En la dirección vertical, sobre el proyectil actúa la fuerza de gravedad que hace que el movimiento sea rectilíneo uniformemente acelerado, con aceleración constante.
Sea un proyectil lanzado desde un cañón. Si elegimos un sistema de referencia de modo que la dirección Y sea vertical y positiva hacia arriba, a y = - g y a x = 0. Además suponga que el instante t = 0, el proyectil deja de origen (X i = Y i = 0) con una velocidad Vi.
Si Vi hace un ángulo qi con la horizontal, a partir de las definiciones de las funciones sen y cos se obtiene:
Vxi = Vi cos θ
Vyi = Vi sen θi
Como el movimiento de proyectiles es bi-dimencional, donde ax = 0 y ay = -g, o sea con aceleración constante, obtenemos las componentes de la velocidad y las coordenadas del proyectil en cualquier instante t, con ayuda de las ecuaciones ya utilizadas para el M.R.U.A. Expresando estas en función de las proyecciones tenemos:
X = Vxit = Vi cos θi t
y = Vyi t + ½ at2
Vyf = Vyi + at
2ay = Vyf2 - Vyi2
Si un proyectil es lanzado horizontalmente desde cierta altura inicial, el movimiento es semi-parabólico.
Las ecuaciones del movimiento considerando Vyi = 0 serían:
X = Vxi t
y = yo - ½ gt2
Recomendamos la realización de la práctica virtual Movimiento bajo la aceleración constante de la gravedad, donde se puede estudiar tanto el movimiento parabólico como el semi-parabólico.
Combinando las ecuaciones arriba explicadas para el movimiento parabólico podemos algunas obtener ecuaciones útiles:
- Altura máxima que alcanza un proyectil:
- Tiempo de vuelo del proyectil:
- Alcance del proyectil :
Atendiendo a esta última ecuación, invitamos al lector a demostrar que para una velocidad dada el máximo alcance se logra con una inclinacion de 45o respecto a la horizontal.
Ecuaciones del movimiento parabólico
Hay dos ecuaciones que rigen el movimiento parabólico:
donde:
es el módulo de la velocidad inicial.
es el ángulo de la velocidad inicial sobre la horizontal.
es la aceleración de la gravedad.
La velocidad inicial se compone de dos partes:
que se denomina componente horizontal de la velocidad inicial.
- En lo sucesivo
- En lo sucesivo
que se denomina componente vertical de la velocidad inicial.
- En lo sucesivo
- En lo sucesivo
Se puede expresar la velocidad inicial de este modo:
: [ecu. 1]
Será la que se utilice, excepto en los casos en los que deba tenerse en cuenta el ángulo de la velocidad inicial.
La única aceleración que interviene en este movimiento es la de la gravedad, que corresponde a la ecuación:
que es vertical y hacia abajo.
Ecuación de la velocidad
La velocidad de un cuerpo que sigue una trayectoria parabólica se puede obtener integrando la siguiente ecuación:
La integración es muy sencilla por tratarse de una ecuación diferencial de primer orden y el resultado final es:
Partimos del valor de la aceleración de la gravedad y de la definición de aceleración
y tenemos
Separamos variables
y pasamos a la integración
efectuamos las integrales
sustituimos [ecu. 1], por su valor
Esta ecuación determina la velocidad del móvil en función del tiempo, la componente horizontal no varía, mientras que la componente vertical sí depende del tiempo y de la aceleración de la gravedad.
Ecuación de la posición
Partiendo de la ecuación que establece la velocidad del móvil con relación al tiempo y de la definición de velocidad, la posición puede ser encontrada integrando la siguiente ecuación diferencial:
La integración es muy sencilla por tratarse de una ecuación diferencial de primer orden y el resultado final es:
Partiendo del valor de la velocidad y de la definición de velocidad, calculamos el vector de posición así
tenemos:
esto es:
integrando:
descomponiendo la integral:
sacando términos constantes de la integral:
realizando la integral:
ordenando términos:
donde es el vector de posición del móvil para el instante t = 0, podemos dividirlo según sus componentes en:
que sustituyéndolo en la ecuación resulta:
y ordenando, por fin:
La trayectoria del movimiento parabólico está formada por la combinación de dos movimientos, uno horizontal de velocidad constante, y otro vertical uniformemente acelerado; la conjugación de los dos da como resultado una parábola.
Movimiento parabólico con rozamiento
La presencia en el medio de un fluido, como el aire, ejerce un fuerza de rozamiento que depende del módulo de la velocidad y es de sentido opuesto a esta. En esas condiciones, el movimiento de una partícula en un campo gravitatorio uniforme no sigue estrictamente una parábola y es sólo casi-parabólico. En cuanto a la forma del rozamiento se distinguen dos casos.
Ejercicios Resueltos.
Resolver los siguientes problemas:
Problema n° 1) Se dispara un perdigón con un rifle de aire comprimido, desde lo alto de una colina. El proyectil parte con una velocidad de 50 m/s, en una dirección que forma un ángulo de 37° con la horizontal, despreciando el rozamiento, determinar:
a) La posición del perdigón a los 2 s, 5 s y 8 s después de haber partido, respectivamente y representar en un diagrama X-Y.
b) Las componentes de los vectores velocidad en los instantes anteriores, representar dichos vectores, en el diagrama anterior, en las cuatro posiciones conocidas.
c) Instante, posición y velocidad en el momento en que se encuentra al mismo nivel que el de partida.
d) Sin hacer cuentas, justifique entre que instantes de los especificados cree Ud. que el proyectil alcanzará la máxima altura, ¿qué velocidad tendrá allí?, calcúlelo ahora y verifique su hipótesis.
e) Con toda la información anterior, dibujar la trayectoria del proyectil y escribir la ecuación de la misma.
Respuesta: a) (80 m;40,4 m), (200 m;27,5 m) y (320 m;-73,6 m)
b) (40 m/s;10,4 m/s), (40 m/s;-19 m/s) y (40 m/s;-48,4 m/s)
c) 6,12 s; (244,8 m;0 m) y (40 m/s;-60 m/s)
d) 3,06 s y 0 m/s
e) 0,75.x - 0,003.x ²/m
Problema n° 2) Desarrollar el problema anterior para un ángulo de partida de 53°.
Respuesta: a) (60 m;60,4 m), (150 m;77,5 m) y (240 m;6,4 m)
b) (30 m/s;20,4 m/s), (30 m/s;-9 m/s) y (30 m/s;-38,4 m/s)
c) 8,16 s; (244,8 m;0 m) y (40 m/s;-60 m/s)
d) 4,08 s y 0 m/s
e) 1,33.x - 0,005.x ²/m
Problema n° 3) Un gato maulla con ganas, instalado sobre un muro de 2 m de altura, Pedro está en su jardín, frente a él y a 18 del muro, y pretende ahuyentarlo arrojándole un zapato. El proyectil parte con una velocidad de 15 m/s, formando un ángulo de 53° con la horizontal, desde una altura de 1,25 m, determinar:
a) ¿A qué distancia por encima de donde estaba el gato pasó el zapato?.
b) ¿A qué distancia al otro lado del muro llegó el zapato?.
Respuesta: a) 3,65 m
b) 4,95 m
Problema n° 4) Un jugador de fútbol efectúa un saque de arco, la pelota pica en la cancha 60 m más adelante y 4 s después de haber partido. Hallar la velocidad de la pelota en el punto más alto y con que velocidad llega a tierra.
Respuesta: a) 15 m/s
b) (15 m/s;-19,6 ms)
Problema n° 5) Un arquero arroja oblicuamente una flecha, la que parte desde una altura de 1,25 m con una velocidad de 20 m/s y formando un ángulo con la horizontal de 53°. La flecha pasa por arriba de un pino que está a 24 m de distancia y va a clavarse a 10 m de altura en otro pino ubicado más atrás. Despreciando el rozamiento y considerando que la flecha siempre es paralela al vector velocidad, determinar:
a) ¿Cuánto duró el vuelo de la flecha?.
b) ¿Con qué velocidad llegó al árbol?.
c) ¿Con qué ángulo se clavó?.
d) ¿Qué altura máxima puede tener el primer pino?.
Respuesta: a) 2,57 s
b) -37° 32´ 17"
c) 15,13 m/s
d) 13,65 m
Problema n° 6) Susana arroja horizontalmente su llavero desde la ventana de su departamento, y Gerardo lo recibe a 1,2 m de altura sobre el piso, 0,8 s después. Sabiendo que Gerardo se encuentra a 4,8 m del frente de la casa de Susana, hallar:
a) ¿A qué altura del piso partió el llavero?.
b) ¿Con qué velocidad llegó a las manos de Gerardo?.
Respuesta: a) 4,34 m
b) (6; -7,84) m/s
Problema n° 7) Un esquiador que se desliza por una rampa inclinada 30° llega al borde con cierta velocidad. Luego de un segundo de vuelo libre, retoma la pista, más abajo, 4,33 m delante del borde de la rampa. Determinar:
a) ¿Qué velocidad tenía en el borde de la rampa?.
b) ¿Con qué velocidad llegó a la pista?.
c) ¿Qué desnivel había entre el borde de la rampa y la pista?.
Respuesta: a) 5 m/s
b) 7,4 m
c) (4,33; -12,3) m/s
Problema n° 8) Un ejecutivo aburrido se entretiene arrojando horizontalmente bollos de papel, desde una altura de 1,2 m, hacia el cesto que tiene 2 m frente a él al otro lado del escritorio, para esto debe superar la esquina del escritorio que se encuentre a 75 cm sobre el piso y a 1 m delante de él, teniendo en cuenta que el cesto tiene 40 cm de alto por 40 cm de diámetro, determinar entre qué valores debe encontrarse la velocidad de partida de un bollo para que ingrese en el cesto.
Respuesta: (5,5 ± 0,5) m/s
Problema n° 9) Un malabarista muestra su destreza, manteniendo continuamente en el aire cuatro platos, los recibe con su mano izquierda, a 80 cm del piso, y los lanza con su mano derecha, desde la misma altura y a 1,2 m de donde los recibió. Los platos alcanzan una altura máxima de 4 m sobre el nivel del piso, hallar:
a) ¿Con qué velocidad los arroja?.
b) ¿Con qué velocidad pasan por el punto más alto?.
c) Si tarda 0,2 s en pasarlos de una mano a otra, estimar cada cuánto tiempo recibe un plato.
Respuesta: a) (0,74; 7,92) m/s
b) (0,74; 0) m/s
c) 0,46 s
Ejercicios de Cinemática: Movimiento relativo.
Resolver los siguientes problemas:
Problema n° 1) Un patrullero circula a 20 m/s (72km/h) por una autopista donde se permite una velocidad máxima de 30 m/s. El patrullero tiene un equipo de radar, que en un instante dado le informa:
- Hay un vehículo 5 km más adelante, que se aleja a 15 m/s.
- Hay otro vehículo, 1 km detrás, que se acerca a 5 m/s.
Determinar:
a) Si alguno de los dos está en infracción.
b) En ese caso, ¿qué puede hacer el patrullero para encontrarse con el infractor?:
- Aumentar su velocidad en 20 m/s.
- Mantener su velocidad constante.
- Reducir su velocidad en 10 m/s.
c) Trazar un gráfico posición-tiempo, para los tres vehículos, vistos desde tierra.
d) Elegir una alternativa del punto b), y hallar con qué vehículo se encuentre, y en que posición.
Respuesta: a) que se aleja a 15 m/s
b) Aumentar su velocidad en 20 m/s
Problema n° 2) Un tren de carga cuyos vagones tienen 12 m de longitud, se mueve por una vía rectilínea con velocidad constante de 10,8 km/h (3 m/s). Paralelamente a las vías hay una ruta, por la que circula Pedro en su bicicleta, determinar:
a) Si Pedro estuviera en reposo respecto a tierra, ¿cada cuánto tiempo vería pasar un vagón?.
b) Hallar la velocidad de Pedro con respecto a tierra, cuando al moverse con velocidad constante en el mismo sentido que el tren, ve pasar un vagón cada 6 segundos.
c) Si Pedro se desplazara en sentido opuesto al tren a 5 m/s con respecto a tierra, ¿cada cuánto tiempo vería pasar un vagón?.
d) Trazar los gráficos posición-tiempo con respecto a tierra, para Pedro y el extremo de cada vagón, en cada caso.
Respuesta: a) 4 s
b) 1 m/s
c) 1,5 s
Problema n° 3) Una escalera mecánica traslada personas desde planta baja hasta el piso superior 3,6 m más arriba. La cadena de escalones se mueve ascendiendo en una dirección que forma 37° con la horizontal a 30 m/s. Cada escalón tiene 0,3 m de alto. Determinar para cada caso, ¿cuánto tiempo tardarán en trasladarse desde un piso hasta otro? y ¿cuántos escalones pasarán bajo sus pies?.
a) Andrea se deja llevar por la escalera hacia arriba.
b) Pedro sube por la escalera a razón de un escalón por segundo.
c) Juan baja por la escalera a razón de un escalón por segundo.
d) Un operario de mantenimiento detiene la escalera y sube a razón de dos escalones por segundo.
Respuesta: a) 20 s y 0 escalones
b) 7,5 s y 7,5 escalones
c) 30 s y 30 escalones
d) 6 s y 12 escalones
Problema n° 4) Pedro mide el tiempo de caída de una moneda que tiene sujeta con sus dedos a una altura h del piso de un ascensor, cuando el mismo está en reposo. Repite la experiencia cuando el ascensor sube con una velocidad constante de 2 m/s, y nuevamente la realiza cuando desciende a 2 m/s, siempre desde la misma altura h . ¿En cuál de las experiencias registró un intervalo de tiempo mayor?.
Respuesta: 4 h 6´ 9"
Problema n° 5) Un río de 40 km de ancho es cruzado en 3 h y debido a la corriente del río, el bote amarra en la otra orilla a 10 km de su rumbo original. Determinar:
a) ¿Cuál es la velocidad del bote?.
b) ¿Cuál es la velocidad de la corriente del río?.
Respuesta: a) 13,33 km/h
b) 3,33 km/h
Problema n° 6) Un avión que se desplaza a 800 km/h recibe un viento lateral, que forma un ángulo de 30° con respecto a su rumbo, de 80 km/h. Si debe recorrer una distancia de 400 km, determinar:
a) ¿Con qué ángulo deberá volar el avión?.
b) ¿Cuánto tarda en recorrer dicha distancia?.
Respuesta: a) 2° 51´ 57"
b) 32´ 53"